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ON THE DYNAMIC IMPOSSIBILITY OF GRIOLI REGULAR PRECESSION IN THE 
MOTION OF A RIGID BODY SUSPENDED BY A ROD* 

G.V. GOBS and G.A. KONONYKBIN 

The dynamic impossibility of Grioli precession /l/ in the motion of a 
heavy rigid body suspended by a rod is proved. Along with the regular 
precession relative to the vertical of a Lagrange gyroscope, there is 
well known /l/ to be regular precession of an asymmetric heavy rigid body 
relative to an inclined axis. This is also true for the motion of a 
heavy gyrostat /2/ andthemotion of a heavy rigid body in a fluid /3/. 

1. Formulation of the problem. The equations of motion of a heavy rigid body, 
suspended by a weightless rod, whose ends are clamped by spherical joints at a fixed point 
andthepoint of suspension, will be written in the vector form /4/, by introducing instead 
of the central tensor of inertia the tensor of inertia relative to the point of suspension 

A.o* +~@[(e.o*)e-co* + (we)(O X e)l= (1.1) 
(A-o) x o i- R(t)p(e x r) 

nr, [r** + O* x r+ 2~ x r* +(~r)0--rroa]= 

mp[exo*-((o.e)o+02e]+mgv--((t)r 

Eqs.cl.1) have the first integrals 

mroz(r*+wxr)*+2mr,p(r*+oxr)~(wxe)+(Ao~o)- 
2mgp(e.v)- Zmgr, (rev)= 2E 

v.(Ao+mroptex(r*+wxr)+rx(oxe)]+ 
mro2 [r x (P* + o x r)]) = k 

(1.2) 

Here, 0 is the angular velocity vector of the body of mass m, V is the unit vector 
indicating the direction ofthegravity force, r is the unit vector directed along the rod of 
length r,, from the fixed point O1 to the point of suspension 0, R (t) is the size of the 
reaction force, e. is the unit vector from the point 0 to the centre of mass C of the body, 
A is the tensor of inertia of the body, constructed at the point 0, and E and k are constants 
of the integrals; the asterisk denotes the relative derivative. 

We introduce in the fixed space the unit vectory : 
y*=yxo (1.3) 

Let x be the angle between v and y; then 

v*y = c,, y.y = 1, v-v = 1, co = cosx (1.4) 

We assume that the body performs regular precession relative to the vector y in such a 
way that the angle between the barycentric axis through the vector e and the vector y is 
constant throughout the motion (obviously, p#O) 

e.y = a, (1.5) 
Differentiating (1.5) in the light of Eq.cl.31, we obtain in the case of regularprecession 

6.1 = n,e + m,y (1.6) 

where n, and m,are constants. Notice that, in Grioli's solution for the classical problem 
of the motion of a rigid body about a fixed point, no= me. To preserve generality we shall 
assume henceforth that n,# m,. After substituting (1.6) into (l-3) we have 

Y* = no (Y x e) (1.7) 
We connect a moving coordinate system with the vector e: e = (0,0,1). Then we satisfy 

relations (1.5), (1.7) and the condition v.y = 1 by writingthe components of the vector y 
in the form 
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1’1 a,,’ sill (I', y% ~~ 0”’ cos ‘c, y:, 1 “0 
(a, :- t:.y cos o,,, a,’ =- sin 8,, $1 =-: 7L,t -I- Ua0) 

where t is time. The kinematic Eq.cl.1) and the final relations for 
by putting 

v : (cO + u&,')Y - b,' e sin $ - 6,' (v >: e) Cos II, 

(b,' = b,la,‘, b, = sin x, 11, = m,t + &J 

(1.S) 

Y of (1.4) are satisfied 

(1.9) 

2. Integration of the equations of rotation. On multiplying the first Eq.cl.1) 
scalarly by e, we obtain an equation which , on substituting into it expressions (1.6) and (1.8), 
must given identity in the variable 'p. This requirement leads to the conditions (A,j are the 
components of the inertia tensor) 

A,, = A,,, A,, = 0, A,,a, = 0, A,,a, = 0 12.1) 

If we assume that a, # 0, we obtain AIs = A,, = 0, and by the first two equations of 
(2.1), the body will be a Lagrange gyroscope. Since the problem of finding the conditions for 
the existence of Grioli precessions has been posed, it follows from (2.1) that a,, = 0, i.e., 
the angle between e and y is n/2. Relations (1.8) and (1.9) then take the form 

y1 L- sin cp, yz = cos 'p, y3 = 0 (2.2) 
Y = coy - b,e sin $ - b, (v X e) ~0s II, 

By (1.6) and (2.2), the components of the angular velocity vector in the moving system 
are 

o1 = m, sin cp, w2 = m, cos cp, o3 = n, 42.3) 

For the components of the tensor Aij we introduce the following notation (we can assume 
without loss of generality that A,, = 0): 

A,, = A?, = A, A,, = B, A,, = C (2.4) 

Denote by rl? r2r r3 the components of the unit vector T in the moving coordinate system. 
Then substitution of (2.2)-(2.4) into thefirstequation of (1.1) gives (u is an auxiliary 
variable) 

rl == sin 0 LB (n,* - m, 2 sin2 (p) - mono C sin cplif (cp) (2.5) 
r2 = --sir1 u (Bm, sin 'p i- n,C) m, ~0s cpif (cp) 
r3 = cos u, R (t) = f (cp)/p sin u 

f (T) = [B2m02 (m, * - 2n,7 sin2 'p + 2m,n, (moZ - no%)* (2.6) 
BC sin v + no2 (BZno2 -t C2m02)l’/~ 

3. Integration of the second Eq.(l.l). The vectors 0 and v are specified in the 
semimoving basis e, y, y X e by (1.6) and (1.9), and have in this sense an invariant form. On 
the basis of (2.2) and (2.5), the vector r is also conveniently written in the similar form 

r = a,e + a,y + aQ (y X e) t3.1) 
a1 = cos u, a2 = CD (cp) sin u/f (cp) 
cc3 = Bn,? cos cp sin u’f (cp) 

CD (rp) = B (n,’ - mo2) sin cp - m,n,C 

Since a, = 0 the vectors e, y,e X y are mutually orthogonal. We substitute into the 
second equation of (1.11, relations (1.6), (1.9), (3.1) and project the resulting equation 
onto the vectors e, y, e X y. We obtain (the prime denotes the time derivative) 

mr, (a," - Bm,a,' - m,%,) = mpmo2 - (3.2) 
mgb, sin 4 - a,/ (cp)!p sin u 

mrOa2 .. = mgc, - a,f (cp)/p sin u 
mr, (a3’* + Zm,a,’ - m;*a3) = -mgb, cos 11 - c(J (cp)/p sin (I 

Substituting for a2 from (3.1) into the right-hand side of the second equation of system 
(3.21, we find a2" in terms of the known function of time. Integrating this expression twice 
and noting that the function a,is bounded (it is the projection of a unit vector onto the 
vector y), we obtain 

mr,pz, = h, + Bn,-2 (noi - mo2) sin 'p 3.3) 
mgpc, + m,n,C = 0 
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Equating the expressions for a,of (3.1) and (3.3), we find the time dependence of o: 

sins = (PO + o&Q, (cp))f (cp) (3.4) 
piI = (m~~p~~)-l, a, = (~~~~* + rn~~~C~/rnP~~~~~ 

Then, by (3.1), a3 = BnoZcosq,(fL, -I- a,,/@(cp)). Using this dependence, we can integrate the 
last equation of (3.2) and obtain (x0 is an arbitrary constant) 

We first take the special case in (3.5) when no2 = mot, i.e., %= ena& = &*). From 
(3.4) we find that 

sin a/f (cp) = go, hi = (mop - ho - C) PO (3.6) 

We then have from (3.1): 

c&l = cos u, c2 = -rn&CLl, a3 = Bn,2& cos ip (3.7) 

Substituting o,and a3 of (3.7) into the third equation of system (3.2), we obtain f& 
is an arbitrary constant) 

cos u = 1, sin ip + 1, 
1, = 'if& (2Bno4E,p - mgb,g - Bno2) 

(3.8) 

BY (3.6), sins = &&t(C" + BZ COS ‘p. We substitute this expression and (3.8) into the 
identity sirPa i_ cosz u = 1. The following conditions must then be satisfied: 

1,* - &J%o'BZ = 0, t,l, - 0, E,2 f Eo"no+ (CZ + B2) - 1 = 0 (3.9) 

we consider the case 1, = 0, E0 = O,l, = 5~1. It follows from (3.1) that I‘ = *e, i.e., 
the body moves with the rod like a single rigid body, It can be shown that in this case the 
system is at rest. 

Let 1, = 0. We substitute (3.71, where cost takes the value (3.81, into Eq.(3.2), and 
require that the resulting equation be an identity in t. Then, p=O, which is impossible, 
by the statement of the problem. Hence mo2 # no2 and on the basis of (3.4) and (3.5) the 
equation sin20 + cospu = I gives 

f" (cp)[& + a,/@ (q~)l" -t a? - 1 = 0 (3.10) 

where the dependence ai = al(q) is given in (3.51. Here we put rp = nk, kEZ(Z is the set 
of integers); then, from (3.10), we obtain the expression sin (rn~~k/n~) = d,, where do is a 
constant. For all values of k, this expression can only hold if m,, = knot where nEZ. By 
a suitable choice of the fixed coordinate system, we can arrange for 9 = ncp. On getting rid 
of the denominator and expanding In I@(cp) 1 in a Taylor series, we require that (3.1.0) be 
an identity in m. Since we have an infinite series for the logarithmic function, we obtain 
aO= 0. On again considering Eq.(3.10) with a, = 0, we can conclude that Ip - frp, i.e., 
we return to the case considered above. 

The sum up, in the problem of the motion of a heavy rigid body suspended by a rod, 
Grioli precessions are dynamically impossible. 
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